

Welcome to the sstudentt package documentation!

Contents:

	A python implementation of the skewed student-t distribution.
	Features

	References

	Licence

	Documentation

	Installation
	Stable release

	From sources

	Usage
	Importing the Class

	Initialize a Class Instance

	Calculate Densities

	Calculate Probabilities

	Calculate quantiles

	Draw Random Numbers

	Use an array of parameter values

	SST Class

	SST Methods

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.1 (2021-06-05)

	0.1.0 (2021-06-05)

	0.0.5 (2020-04-19)

	0.0.3 (2020-04-20)

	0.0.3 (2020-04-19)

	0.0.2 (2020-04-19)

	0.0.1 (2020-04-19)

Indices and tables

	Index

	Module Index

	Search Page

 [image: PyPI]
 [https://pypi.org/project/sstudentt/][image: PyPI - Status]
 [https://pypi.org/project/sstudentt/][image: Travis (.com)]
 [https://travis-ci.com/berrij/sstudentt][image: Documentation Status]
 [https://sstudentt.readthedocs.io/en/latest/usage.html][image: PyPI - License]
 [https://pypi.org/project/sstudentt/]

A python implementation of the skewed student-t distribution.

This package implements the skewed student-t distribution in python. Parameterized as described in Wurtz et. al (2006) 1.
An implementation in R is already existent 2.

Features

	Evaluate the density function

	Evaluate the cumulative distribution function

	Evaluate the quantile function

	Generate random numbers

References

	1

	Wurtz, Y. Chalabi, and L. Luksan. Parameter estimation of arma models with garch/aparch errors. an r and splus software implementation. Journal of Statistical Software, 2006.

	2

	R Implementation: https://www.gamlss.com/wp-content/uploads/2018/01/DistributionsForModellingLocationScaleandShape.pdf

Licence

Free software: GNU General Public License v3

Documentation

Documentation: https://sstudentt.readthedocs.io.

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install sstudentt, run this command in your terminal:

$ pip install sstudentt

This is the preferred method to install sstudentt, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for sstudentt can be downloaded from the Github repo [https://github.com/berrij/sstudentt].

You can either clone the public repository:

$ git clone git://github.com/berrij/sstudentt

Or download the tarball [https://github.com/berrij/sstudentt/tarball/master]:

$ curl -OJL https://github.com/berrij/sstudentt/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

This page demonstrates the usage of the sstudentt.SST Class.

Importing the Class

>>> from sstudentt import SST

Initialize a Class Instance

Now, create an instance of the sstudentt.SST class as follows:

>>> dist = SST(mu = 1, sigma = 1, nu = 1, tau = 5)

Note

This distribution is only defined for tau > 2 it will return NaN if you set tau to <= 2.

Calculate Densities

You can evaluate the density of your distribution using the .d method:

>>> dist.d(5)
array(0.00192913)

Calculate Probabilities

To evaluate the cumulative distribution function use .p:

>>> dist.p(5)
array(0.99821359)

Calculate quantiles

Calculate quantiles with the .q method as follows:

Calculate the Median
>>> dist.q(0.5)
array(1.)

Note

Since dist.nu equals 1 we have defined a symmetric distribution. That is, the median equals the mean (dist.mu).

Draw Random Numbers

Draw 5 random realizations
>>> dist.r(5)
array([3.05375391, 1.34209471, 1.01463769, 1.87961664, 1.58893329])

Note

You can also define the shape of the return array to draw multiple random numbers as follows.
Note that this only works when all class parameters (mu, sigma, nu tau) are defined as scalars. If (some of them) are arrays .r will always return an array of random values that matches the respective input shape

Draw 5 random realizations
>>> dist.r((4,5))
array([[1.92072641, 0.60935071, 2.13692281, 0.66015911, 3.11887499],
 [2.08452098, -0.3657303 , 0.95636288, 2.67946154, 0.89610456],
 [1.13357025, -0.26609876, 2.32864548, 0.79109498, 2.00020994],
 [0.64556586, 1.32889601, -0.49943665, -0.14925501, 1.11598305]])

Use an array of parameter values

It’s possible to intialize the distribution using arrays for the parameters.

For demonstration purposes we will define 2 arrays:

>>> arr_1 = np.array([[1, 3], [3, 7]])
>>> arr_2 = np.array([[7, 3], [3, 1]])

You can use these arrays to instantiate a distribution as follows:

>>> dist2 = SST(mu = arr_1, sigma = arr_2, nu = 2, tau = 4)

As you can see, it’s possible to mix arrays (of equal size) with scalars.

The methods will now return an array of the same shape:

>>> dist2.p(2)
array([[6.63755107e-01, 4.35802430e-01],
 [4.35802430e-01, 1.21990298e-05]])

Its even possible to use an array (of the same shape) as method input:

>>> dist2.p(arr_2)
array([[8.57842312e-01, 6.04032453e-01],
 [6.04032453e-01, 5.29846717e-06]])

This does not work with the .r method.

Warning

The functions are relatively robust against arrays of different sizes because it uses the numpy broadcasting for casting arrays together.
This can, however, create results which might be hard to interpret.
Therefore, I strongly recommend sticking to one of the following for parameter definition:

	Scalars for all parameters

	Arrays of the same shape for all parameters

	A mixture of scalars and same shaped arrays

SST Class

	
class sstudentt.SST(mu, sigma, nu, tau)

	Creates an Instance of the Skewed Student T Distribution.
In this parameterization the expectation equals mu and standard
deviation equals sigma.

	Parameters

	
	mu (scalar or array_like) – mu parameter

	sigma (scalar or array_like) – sigma parameter

	nu (scalar or array_like) – nu parameter

	tau (scalar or array_like) – tau parameter

SST Methods

	
SST.d(y)

	Density Function

	Parameters

	y (scalar or array_like) – distribution values

	Returns

	density at the specified y values

	Return type

	array

	
SST.p(q)

	Distribution Function

	Parameters

	q (scalar or array_like) – value

	Returns

	The probability that the SST distributed variable will take

a value less than or equal to q.
:rtype: array

	
SST.q(p)

	Quantile Function / Inverse CDF / Percent Point Function

	Parameters

	p (scalar or array_like) – probabilities

	Returns

	Quantile values corresponding to the specified probabilities.

	Return type

	array

	
SST.r(n=1)

	Draws Random Numbers which Follow the SST Distribution

	Parameters

	n (int or tuple of return shape, optional) – sample size

	Returns

	random sample drawn from the SST distribution

	Return type

	array

Note

n is ignored if the distribution parameters are provided as
arrays. In that case, a sample with the shape of the provided arrays
will be drawn. i.e. n = 1.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/berrij/sstudentt/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

sstudentt could always use more documentation, whether as part of the
official sstudentt docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/berrij/sstudentt/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up sstudentt for local development.

	Fork the sstudentt repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/sstudentt.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv sstudentt
$ cd sstudentt/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 sstudentt tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/berrij/sstudentt/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_sstudentt

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Jonathan Berrisch <jonathan@berrisch.biz>

Contributors

None yet. Why not be the first?

History

0.1.1 (2021-06-05)

	Fix malformed README file

0.1.0 (2021-06-05)

	Moving to beta state

	Use rtd-sphinx-theme for the documentation

	Update dev requirements

0.0.5 (2020-04-19)

	First release on PyPi

	Use pydata-sphinx-theme for the documentation

0.0.3 (2020-04-20)

	Update Documentation

0.0.3 (2020-04-19)

	Automatic deployment on Test-PyPi via travis

0.0.2 (2020-04-19)

	Import SST class directly

0.0.1 (2020-04-19)

	First release on Test-PyPI.

Index

 D
 | P
 | Q
 | R
 | S

D

 	
 	d() (sstudentt.SST method)

P

 	
 	p() (sstudentt.SST method)

Q

 	
 	q() (sstudentt.SST method)

R

 	
 	r() (sstudentt.SST method)

S

 	
 	SST (class in sstudentt)

 nav.xhtml

 Table of Contents

 		
 Welcome to the sstudentt package documentation!

 		
 A python implementation of the skewed student-t distribution.

 		
 Features

 		
 References

 		
 Licence

 		
 Documentation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Importing the Class

 		
 Initialize a Class Instance

 		
 Calculate Densities

 		
 Calculate Probabilities

 		
 Calculate quantiles

 		
 Draw Random Numbers

 		
 Use an array of parameter values

 		
 SST Class

 		
 SST Methods

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.1 (2021-06-05)

 		
 0.1.0 (2021-06-05)

 		
 0.0.5 (2020-04-19)

 		
 0.0.3 (2020-04-20)

 		
 0.0.3 (2020-04-19)

 		
 0.0.2 (2020-04-19)

 		
 0.0.1 (2020-04-19)

_static/file.png

_static/minus.png

_static/plus.png

